Crystal field theory predicts how the d-orbitals of transition metals are influenced by the ligand environment

- d-orbitals are not degenerate
- An electrostatic model that assumes all ligands to be point (negative) charges
 - As a consequence of the point charges, the d-orbitals in a metal complex are not degenerate;
 - The relative energies of the d-orbitals depend on the "crystal field" (the electrostatic field), which 0 is governed by the ligand arrangement

- While there is attraction between the metal ion and ligand point charges, there are repulsive interactions between the electrons in the d-orbitals and the ligands
- An incredibly simple, but unrealistic, model for understanding structural, electronic, and magnetic properties — for synthetic organic chemists, it is useful for understanding why metal complexes adopt certain geometries
 - Resort to ligand field theory for a more rigorous treatment

A) Octahedral Crystal Field (O_h)

- Δ_{oct} is the energy difference between the t_{2g} and e_{g} sets of orbitals (see Page 4 brief review)
 - Determined empirically (*i.e.*, via electronic absorption spectroscopy; easiest to determine for early transition metals with few t_{2g} electrons)
 - Magnitude of Δ_{oct} affects whether a transition metal complex exhibits a high-spin or low-spin electron configuration:

High-Spin vs Low-Spin Complexes (consider the following d⁶ arrangements):

- Crystal field stabilization energy (CFSE) quantifies the stabilization attained from the crystal field with respect to the spherical field
 - The difference in energy between the *d*-electrons in the crystal field and those in the spherical field (barycenter; set to 0)

High-spin d⁶ complex – $t_{2g}^4 e_g^2$: CFSE = 4 (-0.4 Δ_{oct}) + 2 (0.6 Δ_{oct}) = -0.4 Δ_{oct}

Low-spin d⁶ complex – t_{2g}^{6}e_{g}^{0}: CFSE = 6 (-0.4 Δ_{oct}) + 2P = -2.4 Δ_{oct} + 2P

- Δ_{oct} **large** for low-spin complexes ($\Delta_{oct} > P$)

- Δ_{oct} small for high-spin complexes ($\Delta_{\text{oct}} < P$)

- The strength of the crystal field influences the magnitude of Δ_{oct} : Δ_{oct} (weak field) < Δ_{oct} (strong field)
 - 3 factors affect Δ_{oct} :
 - i) Δ_{oct} increases along the **spectrochemical series** of ligands:

weak	c-field li	gands	5									increas	ing field	strength	>
ı ^Θ	Br ^Θ	s⊖ S⊖	NEC-	Θ	cı ^Θ	N_3^{Θ}	۶ ^Θ	N≡C	- <mark>0</mark> ⊖	но ^Θ	⊖ o ∕		H ₂ O	⊖ _{N=C=S}	
	(via fille	PPh ₃	n be π-c rbitals) <mark>Η</mark> Θ			Ĵ			, н	1 ₂ N	"mid- `NH₂	field" lig NH ₃	ands are	e σ-donors CH ₃ CN	¥
stror good	ng-field σ-dono	ligand: rs and Id liga	s tend to π-accep	be otors	Ň	j ir	ncreasi	N N na field	strene	ath			'N'		1
v <u>su</u>	ong-ne	ia iigu					101000	* H ⁻ s	trong-	field liga	nd due	to very	strong M	1–H σ-bond	1

 $e.g. \Delta_{oct}{[Fe(OH_2)_6]^{3+}} = 13\ 700\ cm^{-1}\ vs\ \Delta_{oct}{[Fe(CN)_6]^{3-}} = 35\ 000\ cm^{-1}$

2 additional sets of

paired electrons

CHEM211B

Crystal Field Theory

ii) Δ_{oct} increases with increasing oxidation state:

Metal Complex	Δ_{oct}	Metal Complex	Δ_{oct}	Metal Complex	Δ_{oct}	
[Cr(OH ₂) ₆] ²⁺	14 100 cm ⁻¹	[Fe(OH ₂) ₆] ²⁺	9 400 cm ⁻¹	[Co(OH ₂) ₆] ²⁺	9 300 cm ⁻¹	
[Cr(OH ₂) ₆] ³⁺	17 400 cm ⁻¹	[Fe(OH ₂) ₆] ³⁺	13 700 cm ⁻¹	[Co(OH ₂) ₆] ³⁺	18 200 cm ⁻¹	
	III) Δ_{oct} increases	down a group of co	ngeners:	Metal Complex	Δ_{oct}	
	 D_{oct} increases There is no it 	down a group of co trend within a row of	ngeners: ⁻ metals	Metal Complex [Co(NH ₃) ₆] ³⁺ [Rb(NH ₂) ₂] ³⁺	Δ_{oct} ~22 000 cm ⁻¹ ~ 34 000 cm ⁻¹	

• Empirically, there is a spectrochemical series of metal ions:

Mn(II) < Ni(II) < Co(II) < Fe(III) < Cr(III) < Co(III) < Ru(III) < Mo(III) < Rh(III) < Pd(II) < Ir(III) < Pt(IV)

crystal field theory does not rationalize the order of the spectrochemical series

B) Tetrahedral Crystal Field (T_d) – crystal field diagram is the inversion of the O_h crystal field

Crystal Field Theory

- $\mathbf{e} \rightarrow \mathbf{t}_2$ (T_d) transitions require less energy than those of $\mathbf{t}_{2g} \rightarrow \mathbf{e}_g$ (O_h) transitions; therefore, tetrahedral complexes tend to be high spin and more brightly colored
 - Complexes with d⁰, d⁵ (high-spin), and d¹⁰ electron configurations adopt tetrahedral geometries
 - When all the d-orbitals are equally-occupied, the Td geometry of the metal-ligand complex arises from minimizing steric interactions

 T_d complexes can arise from other high-spin d-electron configurations with weak-field ligands, except d³ and d⁸:

C) Square Planar Crystal Field

• The square planar crystal field orbital energy diagram can be derived from an octahedral complex by removing the axial ligands along the *z*-axis

• Most common with d⁸-electron configurations:

• Some d⁹-complexes can adopt square planar geometries:

D) Trigonal Bipyramidal Crystal Field

• Some d⁸-complexes adopt trigonal bipyramidal structures:

